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Huang et al. noted the use of SHAP and LIME methods in clinical
applications in their reply [1]. However, they must acknowledge
that these techniques depend on machine learning models, which
inherently introduce biases in feature importance due to their
model-specific nature [2e4]. As a result, different models can yield
inconsistent feature importance rankings, evenwhen genuine asso-
ciations between the target and features exist. This reliance on ma-
chine learning for calculating feature importance can lead to
erroneous and misleading conclusions, compromising the inter-
pretability of results and undermining the overall validity of
research findings [2e4]. A more effective approach would involve
employing robust statistical methods [5] that accurately reveal
true associations, thereby enhancing the integrity of the analysis.

Many researchers, including Huang et al., need to recognize the
critical distinction between machine learning and feature impor-
tance. While the primary goal of machine learning is to accurately
predict outcomes, feature importance aims to reveal the true asso-
ciations between the target variable and its features. However, due
to the model-specific nature of machine learning approaches, these
models often fail to generate genuine associations [2e4]. This lim-
itation can lead to misleading interpretations and potentially erro-
neous conclusions, emphasizing the necessity for researchers to
employ robust statistical methods that can more faithfully uncover
the underlying relationships in the data. By understanding this
discrepancy, researchers can better align their analytical strategies
with their research objectives, ensuring more reliable results.

Instead of using these potentially biased feature importances,
it's essential to focus on establishing true associations through
robust statistical methods, such as Chi-squared tests with p-values
and/or Spearman's correlation with p-values [5]. These methods
provide a clearer and more accurate representation of relationships
within the data. This paper emphasizes the limitations of SHAP and
LIME due to their reliance on biased machine learning models and
advocates for the use of robust statistical techniques to derive
meaningful and valid associations, ultimately enhancing the integ-
rity of research findings. By prioritizing true statistical associations
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over biased feature importances, researchers can make more
informed decisions and improve the reliability of their analyses.
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