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Famularo et al. employed several machine learning models to predict 
the risk of post-hepatectomy liver failure (PHLF) in hepatocellular car-
cinoma (HCC) patients [1]. They used Extreme Gradient Boosting 
(XGB), Random Forest (RF), and Support Vector Machine (SVM) models, 
trained with clinical and radiomic features. Hyperparameters were 
optimized through grid search, and model performance was evaluated 
using AUC, accuracy, sensitivity, and specificity. The feature importance 
of the models was assessed, and SHAP (Shapley Additive Explanations) 
was applied to the XGBoost and Random Forest models to explain the 
contribution of individual features to the model’s predictions.

Machine learning techniques like XGBoost are widely used, but 
different machine learning models employ distinct methodologies for 
calculating feature importance, and this can lead to varying degrees of 
bias. Feature importance from machine learning models is always 
inherently biased, which is a significant issue [2,3]. Therefore, although 
Famularo et al. possess considerable expertise, it is equally necessary to 
fully consider the complexities of algorithmic calculations and their 
associated biases. To avoid non-negligible biased feature importances, it 
is recommended to rely on robust statistical methods that assess genuine 
associations between variables, such as Spearman’s correlation with 
P-values, non-linear and nonparametric approaches [4].

XGBoost (Extreme Gradient Boosting) is a decision tree-based 
ensemble algorithm known for its effectiveness but may introduce bia-
ses in feature importance calculations. It uses metrics like gain (accuracy 
improvement contribution), coverage (relative observation association), 
and frequency (feature usage). These metrics are model-specific, 
meaning feature importance rankings vary with model configurations, 
making them non-absolute. Correlated features can distort importance 
evaluations, leading to underestimation or overestimation of contribu-
tions. Feature interactions further complicate assessments, and over-
fitting can inflate the importance of features that perform poorly on new 
data. The sequential tree-building approach may disproportionately 
emphasize features that correct previous errors [2].

Random Forest, another powerful machine learning algorithm, ex-
cels in feature selection and prediction. It constructs numerous decision 
trees and combines their predictions to improve stability and accuracy. 

However, Random Forest can introduce bias with categorical features 
having many unique values, which might give high importance to fea-
tures with little predictive impact. Additionally, it may fail to capture 
non-linear relationships, underestimating feature importance in such 
cases. Class imbalance can also skew feature importance towards fea-
tures prevalent in the majority class, neglecting crucial features in the 
minority class [2].

SHAP is a reliable explanation framework, but it is not without biases 
[3]. Its dependence on the model means SHAP values can inherit and 
amplify biases present in the model. Moreover, SHAP assumes that 
features are independent when assessing their contributions, which may 
not always hold true. When features are correlated, their combined 
impact may distort the overall interpretation. SHAP values can also be 
particularly sensitive to outliers or noise in the dataset, which can result 
in misleading evaluations of feature importance. Features that are 
typically of low importance can be disproportionately influenced by 
outliers, causing skewed importance metrics. Furthermore, SHAP may 
misrepresent contributions when features have non-linear relationships 
with the target, particularly in complex models like XGBoost.

In conclusion, while both XGBoost and Random Forest are widely 
used methods, caution is needed when interpreting feature importance 
due to the potential biases inherent in these models. Additionally, while 
SHAP values provide a structured approach to explaining model pre-
dictions, they are inherently influenced by the model’s biases and un-
derlying assumptions, particularly regarding feature independence. 
Given these considerations, the authors may want to consider incorpo-
rating robust statistical methods, such as Spearman’s correlation with p- 
values [4], to supplement machine learning-derived feature importance. 
This would provide more reliable insights into the true associations 
between features and outcomes, thereby enhancing the validity of their 
findings. By doing so, they can uncover genuine relationships between 
features and outcomes, ultimately advancing knowledge in predicting 
PHLF occurrence preoperatively, while mitigating the risks associated 
with biased interpretations.
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