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A Paralle] Algorithm for Time-Slot Assignment
Problems in TDM Hierarchical Switching Systems

Nobuo Funabiki, Member, IEEE, and Yoshiyasu Takefuji

Abstract— This paper presents a parallel algorithm for time-
slot assignment problems in TDM hierarchical switching systems,
based on the neural network model. The TDM systems are
operated in repetitive frames composed of several time-slots. A
time-slot represents a switching configuration where one packet
is transmitted through an I/O line. The goal of our algorithm
is to find conflict-free time-slot assignments for given switching
demands. The algorithm runs on a maximum of n*xm proces-
sors for m-time-slot problems in nxn TDM systems. In small
problems up to a 24x24 TDM system, the algorithm can find the
optimum solution in a nearly constant time, when it is performed
on n?xm processors.

I. INTRODUCTION

DM (Time Division Multiplexing) hierarchical switching

R systems have been used widely in both terrestrial and
satellite networks. The TDM systems can reduce hardware
costs, enhance trunk line efficiency, and accommodate addi-
tional loads [1]1-{4]. Eng et al. defined the general structure of
TDM systems as shown in Fig. 1 [3]. A TDM system consists
of three synchronously operated stages: several multiplexers,
one central time-multiplex crossbar switch, and several de-
multiplexers. Multiplexer #i concentrates P; inputs from end
usess to I; TDM lines, then to the central switch, where P;
is usually larger than I;. The central switch exchanges the
TDM lines. Demultiplexer #; connects O; TDM lines with
Q; outputs to end users, where Q; is usually larger than 0;.
The total number of input lines is equal to that of output lines.
We use the assumption of Eng et al. that signals through the
TDM systems are fixed-length message packets [3]. The pack-
ets are transmitted in repetitive frames composed of several
time-slots. A time-slot represents one switching configuration
having a unit time, where one packet can be transmitted
through one /O line. As defined by Bonuccelli [4], packet
transmission demands through the n X n TDM system are
represented by an n X n traffic matrix. The ijth element tij
represents the number of packets to be transmitted from input
#1i to output #j. ¢;; is equivalent to the number of time-slots
required for the packet transmission. In order to maximize
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Fig. 1. A TDM hierarchical switching system.

the throughput, it is necessary to find the conflict-free time-
slot assignment for a given traffic matrix using the minimum
number of time-slots.

The problem of finding conflict-free time-slot assignments
for the traffic matrix has been studied both in TDM hierarchical
switching systems [3], [4], and in TDM non-hierarchical
switching systems [5]-[15], particularly in TDMA (Time Divi-
sion Multiple Access) satellite network applications. Although
the time-slot assignment problem in hierarchical systems is not
NP-complete, some problems in nonhierarchical systems have
proven to be NP-complete. In 1983, Gopal ef al. proved that
the traffic scheduling problem in the case of zone interference,
is NP-complete [13]. In 1985, Gopal et al. proved that the
minimization problem of switching configuration chances is
NP-complete [14]. In 1987, Bertossi et al. proved that the min-
imization problem of total transmission time is NP-complete
[15]). The nonhierarchical system can be seen as a special case
of the hierarchical system, because the former system does
not involve multiplexers and demultiplexers. In 1987 Eng et
al. showed the four requisite conditions for valid solutions in
time-slot assignment problems in hierarchical systems [3]. In
1989, Bonuccelli proposed the O(n®) sequential algorithm for
n X 7 hierarchical systems [4]. Also in 1989, Rose proposed
the O(n) parallel algorithm on n2 processing elements for
simple n X n crossbar switching systems, based on a cellular
automaton [16]. Because Rose’s algorithm cannot deal with
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multiplexer/demultiplexer constraints, a lot of modifications
are requited to cope with time-slot assignment problems in
TDM hierarchical switching systems. A fast parallel algorithm
is essential to improve the switching performance.

II. NEURAL NETWORK APPROACH
FOR OPTIMIZATION PROBLEMS

Our parallel algorithm is based on the three-dimensional
artificial neural network model. A neural network model for
solving optimization problems consists of a large number
of interconnected processing elements. These processing el-
ements are called neurons because they perform the function
of smplxﬁed biological neurons. The interconnections between
processing elements are given by the motion equation:

dU,'jk _ oF
d = Vi

m

where Ui and V;j; are the input and the output respec-
tively of processing element #:jk. The computational energy
function E represents all the constraints of the optimization
problem. The goal of the neural network approach is to
minimize energy function E, where the motion equation
performs the gradient descent method [22].

In 1943 McCulloch and Pitts proposed the first mathematical
neuron model [17]. The input/output function of processing
element #ijk is given by

if Uijk>0 then Vi =1

if Ujx<0 then Vj =0. ()

Hopfield et al. first introduced the neural network model for
solving optimization problems by using the sigmoid neuron
model [18]. The mputloutput function of processing element
#t]k is given by

1

Vijk = ————
1+exp (—%-'oi)

3)

where U, is a constant parameter.

In 1989 Marrakchi er al. proposed the Hopfield neural
network model application for crossbar switching systems,
which was verified only in an 8 x 8 crossbar system [19].
In 1989 Brown proposed the Hopfield neural network model
application for multistage crossbar switching systems [20].
Also in 1990, Brown et al. proposed the application for Banyan
network systems [21]. Unfortunately, none of these inves-
tigators discussed the time complexity and the convergence
frequency of neural network models, although these factors
are always controversial in neural network research. Takefuji
et al. proved that the decay term in the Hopfield neural network
model disturbs the convergence under some conditions [22].

-Although the McCulloch-Pitts neuron model can drasti-
cally reduce the computation time on a digital computer, it
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sometimes introduces undesirable oscillatory behavior. It has
been shown empirically that the newly introduced hysteresis
McCulloch-Pitts neuron model can suppress this oscillatory
behavior [24]. The mput/output function of processing element
#ijk is given by:

if U,'jk > UTP then V;jk =1

if U,‘jk < LTP then V,'jk =0

otherwise V;; = unchanged. . “@)

where UT'P is always larger then LT P, and the initial value
of V;;r must be assigned 1 or 0.

III. NEURAL NETWORK REPRESENTATION
FOR TIME-SLOT ASSIGNMENT PROBLEMS

Fig. 2(a) shows the neural network model for the 4 x 4
traffic matrix problem. Each multiplexer connects two inputs
(P; = 2) with one TDM line (I; = 1). The central switch
exchanges two TDM lines. Each demultiplexer connects one
TDM line (O; = 1) with two outputs (Q; = 2). Fig. 2(b)
shows the neural network representation for the three-time-slot
problem of Fig. 2(a). Because the assignment of each traffic
matrix element requires three processing elements, a total of 48
(= 4 x 4 x 3) processing elements is prepared in this problem.



Generally; a total of n x m processing elements is required
for the m-time-slot problem in an n x n TDM system. The
output of processing element #ijk represents whether or not
one packet from input #4 to output #7 is assigned to time-slot
#k. The nonzero output (V;;x = 1) indicates the assignment,
and the zero output (Vijx = O) indicates no assignment.
Because a total of f;; packets is demanded by traffic matrix
element #ij, a total of ¢;; processing elements from among
m processing elements for ¢;;, must have nonzero output. The
energy function representing this constraint is given by

&)

e .
Ey= (E Vijr — tij) .

r=l

E,; is zero if, and only if, every packet is assigned to a time-
slot. Fig. 2(b) also shows the convergence state of the neural
network model, where black sws indicate nonzgro output

and wh&squares indicate zero ‘output. The two packets for -

t, are amgned to time-slots #1 and #2., the packet for 53 to
ume—slot #3, fox £34 to time-slot #1, and for t4 to time-slot
#3.‘

The TDM hierarchical switching system has two constraints:
1) in a given time-slot, each input can be connected with only
one output and each output with only one input (point-to-
point connections) .and 2) in a given time-slot, multiplexer
#y ‘can connect at most I, inputs with the central switch,
and demultiplexer #2z can connect at most O, outputs with
the central switch. The energy function representing the ﬁrst
constramt is given by

I n

Z Voik + Z Vige | Vige.

p#t q#:

>

1 k=1

2=3

=1 j

(6)

n n

-

E; is zero if, and only if, at most one packet from an input
and at most one packet to an output are assigned to any time-
slot. The energy function representing the second constraint
is given by

=1 g1 k=1 (r ;;il(’id) =1
n
+f Z > Vo —0: | |Vie
p=1

(». c)#(' 3)

where f(z) is 1 if = > 0, and f(2) is 0 if = < 0. Es is

zero if, and only if, I, or.fewer inputs are assigned in any
time-slot for multiplexer #ty, and O, or fewer outputs. are
assigned in any time-slot for demultiplexer #z. Note that
input #4 is connected with multiplexer #y, and output #3
with: demultiplexer #z.
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TABLE 1
SPECIFICATIONS AND SIMULATION RESULTS IN TEN PROBLEMS
__problem specification simulation :resnlt
ave :
matrix size time-slot # | of mﬁ; convergence
' steps frequency

Problem #1 6x6 7 845.3 95%
Problem #2 8x8 10 860.2 . 93%
Problem #3 10 x 10 9 705.8 91%
Problem #4 - 12 x 12 9 8313 92%
Problem #5 ‘14'x 14 10 662.9 94%
Problem #6 16 x 16 11 820.2 90%
Problem #7 18 x 18 12, 7652 82%
Problem #8 20 x 20 13 705.2 89%
Problem #9 22 x 22 14 816.5 80%
Problem #10 24 x 24 15 728.0 76%

The total energy function for this problem is given by:
A
E= —El + BEs+ CE3

o)

Yo 3 Vs + Y Vi | Vi

0 |
M L

+B
i=1 j=1 k=1 ::: ::;
n n m n
DM EIEDY ZVm I,
i=1j=1k=1 (», c)#(l 3) =
+ f Z vaqk - Vijk ®)

(», Q)#(t J)

where A, B, and C are constant coefficients.

From (1) and (8), the motion equation of processing element
#ijk for the m-time-slot problem in the n x n TDM system
is given by

dUi' m n n
Lt (v t) - [ v+ S
=1 , 5 =
n
-Cclfl Y Y Vea-1
pEY  g=1
(»,9)#(4,3)
) n
+fl 3 3SVia-0O ©)
p=1

qE€z
(2 @)#(5.3)

The A-term forces total £;; from m processing elements for
traffic matrix element ¢;;, to have nonzero output. The B-term
discourages ‘processing element #ijk from having nonzero
output if other demands from input #4 and/or to output #; are



FUNABIKI AND TAKEFUJI: PARALLEL ALGORITHM FOR TIME-SLOT ASSIGNMENT PROBLEMS 2893
3 4 :
1 1 3 P Multiplexer #1
. . : Py=3, ;=2
113 P Multiplexer #1 - (Py=3,11=2)
A (Py=3,1;=2) 4 1
1] 1 1 4 ' Multiplexer #2
; C(P2=2,1ps1)
2 2 : .
T Multiplexer #2 4 , 31 12 Multblexer £3
= = tiplexer
- (P2=3,12=2) 4 2]  (Py=3,15=2)
2 3 4
Demultiplexer #1 - Demultiplexer $2 el e
(01=2,Q1=4)  (02=2,Qz=2) e @
i (C)) . .
- N an ML
SEEEE/EEEEE | | T e
M S T Y o i o . - - ;— J‘ - ‘ (_. - y, : ] -’-‘ = v' .A ;,<
RS ik 1 P - . -é-
[ H u -
Ll M| 11 [ ]
: NEEEE ()
t‘ - 1 Fig. 4. The 8 x 8 traffic matrix and the solution to problem #2.
Fig. 3. The 6 X 6 traffic matrix and the solution to problem #1. .
. . . 2 vt REE K :
« 7] ey
’ ' . B 1=3,11%
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IV. THREE. HEURISTICS FOR THE 3] § 12 o
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- . 3%3,
In the neural network model, only -the local minimum 4 :
convergence has :been proven [22]. In order to improve the , ' ]
global minimum: convergence, as required in optimization D ey P ey D o
problems, we have introduced empirically the following three e ’ ® "
heuristics: _ _
1) The hill-climbing term heuristic [22] PER R B H S
The following hill-climbing term is added to the motion gesasaleas P R e e
equation, in order to help a total of t;; processing elements CHHTH E e E THH
for ¢;; to have nonzero output, which is necessary in the global T : LI L
minimum solution of the. neural network model: anuza 3 £
. LT Lo : . H1t am =
m . o ! et FEHEH P
. S Ve — ¢ Wl HamRuAmeE] 3 ‘.._4.,4,,,‘_",';_-
+Dh{ S Vi — 1 (10) HH cuczilasaazac e
A= ' ®)

where h(z).is 1 if £ < 0, and A(z) is 0 if z.> 0.
-2) The omega ‘function heuristic [23] :
The periodic use of the following two forms of B-term in
the motion equation makes local minima shallower, and allows

Fig. 5. The 10 x 10 traffic matrix and the solution to problem #3.
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Fig. 7. The 14 x 14 traffic matrix and the solution to problem #5.

Fig. 9. The 18 x 18 traffic matrix and the solution to: problem #7.
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Fig. 10. The 20 x 20 traffic matrix and the solution to problem #8.

the neural network model to escape easily:

n n
if (tmodT)<w then —B[Y Vou+) Vi

Viik
p=1 =1
pFL a#j
n n
else - B sz,’k + ZViqk (1)
p=1 g=1
P#i q#7

where t is the number of iteration steps, and T and w are
omega function parameters.
3) The input saturation heuristic [25]
The neuron input is saturated between two values, which
also makes local minima shallower.

)i U.‘jk > U_max then U,'J'k = U_max

If Ujjr <U_min then Ujjr = U_min 12)

where U_max is the upper limit of the input, and U_min is
the lower limit.

The following procedure represents our parallel algorithm
for the m-time-slot problem in the n x n TDM system. The
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set of parameters are empirically determined [22]-[34].

0) Set t=0,A=B=C=1, D=20,
T=5 w=2 UP=5 LTP = —

U_max = 200, U_min = —800, and T_max = 3000. (13)

1) Set initial values of Ur(t) for ¢ = 1,---,n, j =
1,---,n, and k = 1,---,m by uniform random numbers
between U_max and U_mm, and set 1mtlal values of Vj;x(t)
by 0.

2) Use the motion equation with two heunst:cs to com-
pute AUsji(t):

if (tmodT) < w then

AU (t) = —A (i Vige(t) = tij)

r=1

~ B[ S Vo0 + 3 Viarl®

Viie(t)
= o
-c|f Z vaqk(t) I,

(», q)#(‘ :r)

Y3 .
2 D Veur(t) = O:
e Pt

+Dh (f: Vigelt) — ,t*'f)

r=1

+f

else

AU;ji(t) = —A ZV,,, t)—t.J)
r=1

3

-B Voir(t) + Z Vwk(t)
i

b -
.-

q#:

Z vaqkm Iv

=1
(P, q)#(' J)

-Clf

+f Z Z Vigk(t) —
(2. q)#(' J)
+Dh (Z Vijr(t) — ti,-) (14)
r=1

3) Update Uj;r(t + 1) based on the first-order Euler
method:

U.'jk(t + 1) = Uijk(t) + AU,‘jk(t) (15)
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Fig. 11. The 22 x 22 traffic matrix and the solution to problem #9.

4) Use the input saturation heuristic:

If Uia(t+1)>U_max then Uy(t+1) = U_max
If U,'jk(t +1) < U_min then U,'jk(t + 1) = U_mifl6)

5) Update V;;x(t + 1) based on the hysteresis McCul-
loch-Pitts neuron model:

if U,’jk(t + 1) > UTP then V}jk(t+ 1) =1
if U,'jk(t + 1) < LTP then V,'jk(t + 1) =0 (17)

6) If all the constrains are satisfied (E = 0), or ¢ =
T_max, then terminate this procedure, else increment ¢ by 1,
and go to step 2.

VI. SIMULATION RESULTS AND DISCUSSION

The simulator based on the algorithm has been developed
on a Macintosh. The ten problems shown in Table I were
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Fig. 12. The 24 x 24 traffic matrix and the solution to problem #10.

examined. Problem #1 was originally described by Gopal
[14], where it was modified from a nonhierarchical to a hi-
erarchical problem. Problem #2 was described by Bonuccelli
[4]. Problems #3-#10 were newly created in this paper,
where traffic matrix elements were randomly generated. Each
problem satisfies the following conditions: 1) a maximum of
four packets are demanded in any traffic matrix element, 2) the
number of time-slots is the optimum condition to have valid
solutions, and 3) the multiplexer/demultiplexer size is similar
to problem #2.

Figs. 3-12 show traffic matrices and multiplexer/demulti-
plexer size, and the global minimum solutions found by our
simulator in the ten problems. The simulator found several
solutions to one problem from different initial values of U ;y.
In order to avoid initial value dependency of the neural
network model, 100 simulation runs were performed from
different initial values of Uj;;. Table I also summarizes
the average mumber of iteration steps required for global
minimum convergence, and the frequency. Fig. 13 shows the
distribution of the number of iteration steps required for global
minimum convergence in two problems. The simulation results
show that in a nearly constant. number of iteration steps, our
algorithm.can find optimum solutions, in smatll size problems
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Fig. 13. The distribution of the number of iteration steps required for global
minimum convergence (a) Problem #2. (b) Problem #6.

up to a 24 x 24 TDM system. We therefore conclude that
our parallel algorithm for m-time-slot assignment problems
in n x n TDM hierarchical switching systems, is able to
find optimum solutions in a nearly constant time, when it
is performed on a parallel machine using n? x m proces-
Sors.

VII. CONCLUSION

Based on the neural network model composed of n? x m
processing elements, we propose a parallel algorithm for m-
time-slot assignment problems in n x n TDM hierarchical
switching systems. The algorithm runs not only on a sequential
machine, but also on a parallel machine with a maximum
of n® x m processors. In small size problems (up to a
24 x 24 TDM system), our simulation results show that
the algorithm is able to find optimum solutions in a nearly
constant time, when it is performed on a parallel machine
with n? x m processors. The algorithm can be easily modified
for other time-slot assignment problems which have multipoint
connections, and/or rectangular traffic matrices.
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